罗素悖论解释97句精选

时间:2024-05-1507:07:05 罗素悖论解释97句精选已关闭评论 59 阅读

罗素悖论解释

1、所以要想真正理解罗素悖论,理发师悖论只是起过渡作用的,正式理解必须要理解罗素悖论的集合论表示。

2、传统的文化认为鸡蛋悖论是一种循环因果悖论,要找出某个最初成因毫无意义。人们认为解决鸡蛋悖论的方法恰恰是这个问题最本质的核心所在。一方认为卵生动物在鸡出现前很久就已经存在了,所以是先有蛋;另一方则认为先有鸡,他们认为现在人们所说的鸡不过是驯养的红原鸡的后代。然而,含糊的观点也造成了这个难题含糊的背景。要更好理解这个问题的隐喻含义,我们可以将问题理解成“X得到了Y,Y得到了X,那么是先有X还是先有Y?”地球形成数亿年后,鸡这个物种出现了,鸡又生下了蛋。如果是蛋先出现,那么是什么来坐在上面孵它呢,又是什么来喂养幼年的小鸡呢?

3、我们不会去使用“所有事物”(everything)这种大到没边儿的词,诸如此种集合,必须被构建为诸多下属集合(subsets),而它们又要属于我们已经明确定义的一个更大的集合。

4、大哲学家、大数学家罗素,提出过不少悖论,例如“理发师”悖论——一个理发师只给不自己刮胡子的人刮胡子——把他给不给自己刮胡子呢?这不是一个矛盾命题,倒像是罗素在开玩笑。他最著名的是“罗素悖论”——由所有不包含自己作为元素的集合构成的集合是不存在的。因为如果存在的话,则一个集合是该集合的成员且仅当他不是该集合的成员。这里深深困扰人们的是,按照先入之见,人们能够阐明的每个集合成员的条件决定了一个集合。为了说清楚什么样的成员条件确实决定集合,各种公理集合论便应运而生了——除非修改以往的公理。

5、由此可见,“第三次数学危机”是在人们误以为数学基础已经牢固,因而盲目乐观,但接着就遇到无法克服的“悖论”时思想准备不足而必然产生的。

6、因此,我们可以得出理发师的这条规矩是自相矛盾的。”(罗素悖论解释)。

7、但随后人们发现,仅仅有整数已经不能充分表达大自然。比如说,有一个苹果,要分给两个人,一个人半个苹果,该如何表达半个苹果呢?(罗素悖论解释)。

8、小城里的理发师放出豪言:“我只帮城里所有不自己刮脸的人刮脸”。那谁来给他刮脸?

9、任正非总裁为引进世界先进管理体系的变革确定了“削足适履”,提出先僵化、后优化。“我们一定要真正理解人家百年积累的经验,一定要先搞明白人家的整体管理框架,为什么是这样的体系。刚刚知道一点点,就发议论,其实就是干扰了向别人学习。”

10、然而,我们已经将B定义为,“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselves)。

11、如果他给自己理发,那么他就属于自己理发的人,按照规矩他就不该给自己理发;如果他不给自己理发,那么按照规矩,他应该给自己理发。

12、关于时间旅行最有名的悖论是科幻小说作家赫内·巴赫札维勒1943年的小说《不小心的旅行者》(《FutureTimesThree》)中提出的。悖论内容如下:时间旅行者回到自己的祖父祖母结婚之前的时空,时间旅行者在该时空杀死了自己的祖父,也就是说,时间旅行者自身从未降生过;但是,如果时间旅行者从未降生,也就不能穿越时空回到以前杀死自己的祖父,如此往复。

13、康托尔利用集合论向人类指出:如果两个集合中的元素可以建立一一对应的关系,那么这两个集合的元素个数就是一样多的。比如正整数集合就可以和正偶数集合建立一一对应关系:每个整数的两倍刚好对应一个偶数,即x∈{整数},y∈{偶数},y=2x,所以正整数集合和正偶数集合元素个数是一样多的。

14、因此,互联网时代企业的生存之道就是很简单了:用互联网降低企业的外部交易成本;同时,用互联网和科学管理降低企业内部交易成本。这个就是互联网企业生存之道。我们也不要去搞那么多互联网思维,所有的争论最终回归到一个问题,是谁替代谁的问题。

15、这个就是华为的互联网思维,这个就是华为的互联网解决之道。这个也是今天华为还在向“蓝血十杰”学习的原因。说到底,就是要在互联网时代通过科学管理,通过运用互联网进一步降低企业内部运作成本,内部交易成本,这样才能够在互联网时代生存下去。

16、让数学家更狂躁不安的是,这个根号2不仅仅很长,而且还没有规律,似乎不能用分数表达,不像1/3那样,虽然用小数表达时也很长,但它有规律可循,可以用分数简洁地表达出来。

17、以下为我的科普书《十分钟智商运动》中相关内容的文章。

18、这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。古代中国也有一个类似的例子:

19、辛普森悖论(Simpson&#s Paradox)亦有人译为辛普森诡论,为英国统计学家E.H.辛普森(E.H.Simpson)于1951年提出的悖论,即在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论。当人们尝试探究两种变量是否具有相关性的时候,比如新生录取率与性别,报酬与性别等,会分别对之进行分组研究。辛普森悖论是在这种研究中,在某些前提下有时会产生的一种现象。即在分组比较中都占优势的一方,会在总评中反而是失势的一方。

20、有一种流行的观点认为,在互联网时代产生于工业化时代的科学管理思想和方法已经过时了,现在需要的是互联网思维,是创新,是想象力,是极致,是颠覆。真的是这样吗?科学管理过时了吗?我们真的不再需要基于数据和事实的理性分析和流程化的精细管理了吗?中国企业没有经过科学管理运动,我们在管理中习惯凭借直觉和经验进行判断,决策的随意性很大,对人的依赖性很大,总愿意创新尝试新事务、新概念,缺少踏踏实实的持续改进精神。恰恰是在互联网时代反而我们应该补上科学管理这一课。

21、宇宙微波背景辐射,不仅描绘了宇宙的边缘,还有我们能见到的最早的光,它揭示了宇宙中的所有物质,所有恒星和所有星系的分布都是很均匀的,这说明有东西促使这一切发生,而这个东西就是被称作暴胀的过程。暴胀理论就是说最开始宇宙不仅是在扩张,而且是以指数方式扩张,意味着在极短的时间内,它的大小就能一次次翻倍。

22、这是古希腊的一个故事:一条鳄鱼从一位母亲的手中夺走了孩子,母亲苦苦哀求说:求求你放过我的孩子,你提什么要求我都答应。

23、这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。

24、假设y∈y,那么根据y的定义,y∉y;假设y∉y,那么根据y的定义,y∈y。因此,得出一组矛盾,不存在这样的集合。

25、悖论(paradox),是指一个命题,听起来是真的,但却被有说服力地驳倒了;或者听起来是荒谬的,却终于得到了证实。由于人们对一个命题真实或荒谬的最初看法是可以改变的;同样,对一个命题否证的说服力也是可变的——因此,悖论有不同的程度。对于那些只有放弃某些已经确立的原理才能解决矛盾的极端的悖论,人们称之为“矛盾命题”。对某些人能称之为矛盾或悖论的命题,对另外信念不同或见解不确定的人可能就不成为矛盾或悖论。

26、但一个意外的发现,彻底颠覆了人们对数学的传统认知。

27、明白了这些,我们就可以讨论罗素悖论的数学表达了。罗素说:设集合S是所有不属于自身的集合构成的集合,即S={x|x∉S}。那么,S是否属于自身呢?

28、这就引出一个问题: 他该不该给自己理发? 或者问: 他的头发应由谁理? 要是他给自己理发, 那么他就违反了自己的规定; 因为按规定, 他不应该为自己理发。

29、就好比1+1/2+1/4+1/8……得到的数不可能是无穷大,总是有限的。

30、从概念上来看,与其说罗素悖论是集合上的悖论,倒不如说它是一个哲学上的概念,一种本体论。

31、继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(KurtGodel,1906-19捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想。

32、这样一来,这个集合就得到了自相矛盾的结果,与理发师悖论如出一辙。

33、这是《庄子·齐物论》里庄子说的。后期墨家反驳道:如果“言尽悖”,庄子的这个言难道就不悖吗?我们常说:

34、(注:线段的大集合,由线段构成;而每个线段又是两点之间所有点的小集合。)

35、他建立“定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里士多德的继承。

36、对无穷的这种理解,让人们成功化解第二次数学危机。

37、数学家们通过计算发现,斜边的长度根号2是一个非常长的小数,不管用什么方法计算,如何计算,好像都算不完。

38、 第二次数学危机 : 无穷小量 是否存在。

39、至少在外国人来看,我们应该学习“蓝血十杰”对数据和事实的科学精神,学习他们从点滴做起建立现代企业管理体系大厦的职业精神,学习他们敬重市场法则在缜密的调查研究基础上进行决策的理性主义。在调查研究基础上进行决策这种理性主义,基于实践本质上是一种批判性的思维,而批判性思维它实际上是创造性思维的起点,没有批判就没有创造,所以创造实际上是发起于批判,因此,科学管理与创新并非是对立的,二者在思维上遵循同样的逻辑。

40、这就是著名的“罗素悖论”。罗素悖论还有一些较为通俗的版本,如理发师悖论等。

41、什么是集合呢?所谓集合,是由某些确定的元素构成的整体。例如:

42、第一次,人们对自然数的简洁产生了怀疑。而且,人们还发现,像根号2这样的无理数并不罕见,看起来比整数还要多得多。

43、理发师悖论中,条件规定“帮自己刮脸”,但只帮自己刮脸的男人的集合无法建立,即使这个条件非常简单,但是无法确定理发师应不应该在这个集合内。所以两种条件都会导致矛盾。

44、罗素悖论(Russell’sParadox)

45、康托尔作为最伟大的数学家之会永远被人类铭记。

46、把所有集合分为2类,第一类中的集合以其自身为元素,第二类中的集合不以自身为元素,假令第一类集合所组成的集合为P,第二类所组成的集合为Q,于是有:

47、因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在一九〇二年提出来的,所以又叫“罗素悖论”。这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。

48、“我说的这句话是假话”,这是一句了不得的话,因为这句话无论怎样都无法获得一个正确的解释。如果说话的人说的是真话,那么这句话就不成立了,既然说的是真话,又怎么能说所说的这句话是假话呢?如果说话的人说的是假话,那么这句话所表明的意思就是说话人所说的是真话,明明说的是假话,又怎么能说这是真话呢?所以无论说话的人说的是真话还是假话,这句话都是矛盾的,是无解的。这就是说谎者悖论,当然,悖论总有被解释清楚的那一天,无数的科学家也在试图揭开说谎者悖论。

49、我们不知道这句话本身是不是“绝对的真理”。

50、“罗素悖论”,实际涉及到集合论进一步发展的问题;包括1900年福尔蒂和康托尔等数学家提出的“证明了必须有一个最高级无穷数”的悖论,也属于集合论范畴。解决类似问题,只能靠数学家们的继续努力了。

51、如果能,那么宣传的标语就有瑕疵。如果不能,标语同样是不严谨的:理发师不能给自己理发,但标语中说“能给所有不能给自己理发的人理发”!

52、要是他给自己理发,那么他就违反了自己的规定,因为按规定,他不应该为自己理发;要是他不给自己理发,他也违反了自己的规定,因为按规定,他一定得给自己不理发的人理发,所以他也得给自己理发。理发师犯难了:他不论怎么做都“自己打自己的耳光”。

53、这引发了人们对无穷的思考。人们认识到,对一段距离进行一分为二的分割需要无穷的时间,但你的时间是有限的,你不可能在有限的时间里去做无穷多的事情,这样就不会陷入“芝诺悖论”中。

54、集合论为数学奠定了坚实的基础,许多概念不清的问题利用集合论得到了完美的解释。数学家希尔伯特度赞誉康托尔的集合论是“数学天才最优秀的作品”,是“人类纯粹智力活动的最高成就之一”。

55、他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”

56、二战结束后,福特公司一次性将这10个人全部招进来了,分别进入了公司的计划、财务、事业部、质量等关键业务和管理控制队伍。这10位人在福特公司掀起了一场以数据分析、市场导向,以及强调效率和管理控制为特征的管理变革,这一场变革使得福特公司摆脱了老福特经验管理的禁锢,从低迷中重整旗鼓再现当年的辉煌。这10个人被称之为美国现代管理企业的奠基者,这个就是“蓝血十杰”的由来。

57、2000多年以来,人类一直没有弄清楚无穷的概念。比如全体正整数4…和全体正偶数8…,都是无穷多个,那么它们谁更多呢?

58、人们开始认真研究无理数,认为无理数一定隐藏着更多数学奥秘。

59、理发师悖论由英国数学家、哲学家、社会的先知、言论自由最勇敢的斗士勃兰特·罗素教授于20世纪初提出。悖论的发表带来的巨大难题改变了整个20世纪数学界的研究方向。

60、三是如何实现从以功能部门为中心的运作方式,向以项目为中心的运作方式转变。真正实现“让听得到炮声的人呼唤炮火”的机会拉动式运作方式;

61、失踪的正方形谜题是一种用于数学课的视错觉,有助于学生对几何图形的思考。两张图都用到了一些相似的形状,只不过位置稍有不同。

62、大家都知道,罗素悖论号称引起了第三次数学危机,那么为什么——这样的一个特殊集合不存在会引起一场数学危机呢?

63、古人没有讨论出答案,今人ThomasHobbes和JohnLocke也在尝试对这个问题进行解答。有些人说:“船还是原来的船。”但是也有人说:“船已不是当初的船。”

64、不可说,又不是不可说。果然不能用公理来理解啊。。。

65、不确定性时代企业的生存之道:用互联网降低企业的外部交易成本;用互联网和科学管理降低企业的内部交易成本。

66、有一天一名顾客来到店里看到了这块牌子,他就问理发师:“你给自己刮胡子吗?”

67、罗素是一个哲学家、逻辑学家、教育学家和文学家,并且获得了诺贝尔文学奖。罗素为什么要提出这个数学悖论呢?

68、在概率论(probabilitytheory)中,我们将“事件”(events)考虑为诸多结果的集合(setsofoutcomes);所以诸多事件的聚集,也是一个大集合,由其他集合构成。

69、费米是意大利出生的美籍物理学家,被誉为“原子时代主要开创者之一”,1938年获诺贝尔物理学奖,是美国研制第一颗原子弹(曼哈顿计划)的主要参与者,因癌症逝于1954年。

70、十九世纪下半叶,德国数学家康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。

71、不是所有的数都是平方数,所有数的集合不会超过平方数的集合。

72、(换言之,上文提到的同时包括非自然数、披萨和加利福尼亚州的大而不当的集合,应该被构建为诸多下属集合:非自然数集合,披萨集合,美国诸州集合;而这些下属集合,又从属于其他更大的集合,比如数字集合,食物集合,各国州省集合。)

73、大名鼎鼎的罗素悖论(也称理发师悖论),直接导致了第三次数学危机的出现。

74、一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。

75、不过,这里有一个很重要的历史背景,就是,为什么这次危机不早不晚,正好在20世纪初即“罗素悖论”提出时就到来了呢?

76、节约悖论是指在经济萧条时期所有人都把钱存进银行,社会总需求会下降,反过来全社会的消费水平下降、经济增速减缓,全社会的资产总数也就下滑。悖论认为个人资产增值的同时,全社会资产反而减少,或者再放开了说,储蓄额的增加在荼毒经济,因为传统认为个人储蓄有益社会,但是节约悖论认为大规模的储蓄会对经济造成伤害。如果所有人都把钱存进银行,账面上个人的资产会增值,但是全社会总体的宏观经济趋势会下降。

77、在人类最开始的潜意识里,整数是最整洁的表达方式,最能代表大自然的事物。

78、但当我们考虑A的相反项——“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselvesaselements)——悖论就出现了。

79、“蓝血十杰”对于现代企业管理的主要贡献是什么?

80、那我们到底该不该管理优秀?该不该管理卓越?要不要追求管理卓越?这个悖论对一些企业的冲击很大,以至于华为多次内部各种讨论的时候,主题自然的都是聚焦在颠覆式创新的问题上来了。以至于华为人都在讨论该如何应对颠覆性创新,相反,人力资本管理问题倒显得地位次要了。最后还是任总站出来稳定军心。任总写了篇文章,认为宝马是不会被颠覆,他在文章中称,“大多数人认为,特斯拉汽车是颠覆性创新的代表,未来肯定会超越宝马。但我认为,只要宝马采取开放性的改革提升自身,也不一定会输。”

81、我认为基于数据和事实的理性分析和决策,本质上是一种批判性思维,这事一种客观的、公正的、态度谦逊的和不带成见的思维方式。批判思维是创造性思维的出发点,没有批判就没有创造;科学管理与创新并非是对立的,二者遵循的是同样的思维规律;科学管理帮助创新发现问题,为创新奠定商业化成功的基础。

82、相传在很早以前的一个村庄里,只有一个理发师,他规定只替而且一定替不给自己理发的人理发。这就引出一个问题:他该不该给自己理发?或者问:他的头发应由谁理?

83、莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。

84、对于任何一个定义清楚的性质P,都存在一个集合来刻画它,这个集合由所有满足P的对象构成。

85、按照科斯交易成本理论我们再来看看互联网,互联网向企业提出的根本问题是什么?互联网企业是降低了市场交易成本还是降低了企业内部交易成本?互联网时代企业内部交易成本还能否低于市场交易成本?还有没有可能低于市场成本?互联网时代企业存在的理由,就是你的交易成本要低于市场交易成本。

86、https://www.businessinsider.com/how-russells-paradox-changed-set-theory-2013-11

87、尽管如此,经过十几年的变革,尽管有了很大的变革,华为与业界最佳实践还存在很大的差距。为此任正非提出,华为在未来的五年里规模上要再翻一番,在规模翻一番的目标下,还要达到人员不显著增加、营运资本不显著增加。所以,我们说华为的管理仍然面临巨大的挑战。主要在以下几个方面:

88、但后来人们得知,0.999……就是等于两者是一个数。

89、吃饭的时候,我旁边坐着一个老总,问我“蓝血十杰”是谁?可能有一些在座的企业家不知道“蓝血十杰”是谁,“蓝血十杰”是二次大战时期美国陆军航空队的“统计管制处”的十位精英。

90、罗素悖论还有一个通俗的例子:上帝是无所不能的,那么上帝能够创造出一个他自己搬不动的石头吗?

91、历史上出现过的数学悖论很多,数理逻辑是数学的研究方法,于是很多逻辑上的悖论,也归在数学门下,以下就是几个有趣的数学悖论:

92、搬运翻译工:Suhrawardi(剑桥大学神学博士)

93、这提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?

94、悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。

95、管理变革要继续坚持从实用的目的出发,达到实用目的的原则。在管理改进中,要继续坚持遵循“七反对”原则:坚决反对完美主义、坚决反对繁琐哲学;坚决反对盲目创新;坚决反对没有全局效益提升的局部优化;坚决反对没有全局观的干部主导变革;坚决反对没有业务实践经验的人参与变革;坚决反对没有充分论证的流程实用。

96、按照世界上通常对悖论的理解,真正的悖论,就是指“矛盾命题”。如此来看,费米悖论并不属于真正的悖论,因为解决他的问题,不需要放弃已经确立的原理。

点击展开全文
雨后春笋的解释和造句 个性说说

雨后春笋的解释和造句

雨后春笋的解释和造句 1、惩恶扬善:惩治邪恶,鼓励从善。(注:“惩”的读音为chng)(示例)人人都应有。 2、宾至如归:形容招待客人周到、殷勤,使客人感到温暖。  3、比喻临时杂凑...
果然怎么解释49句精选 个性说说

果然怎么解释49句精选

果然怎么解释 1、当然,中国现在回来了很多人才,这是很重要的。但是中国的个人所得税比外国高很多,如果来到中国,要多缴这么多税,“雷锋”精神是不可持续的,雷锋是把一切...
喜出望外的成语解释及意 个性说说

喜出望外的成语解释及意

喜出望外的成语解释及意思 1、寻根问底:寻求根源,追究底细,形容什么事都要问个所以然。 2、纵横交叉ㄧzònghēngjiāochā横的和竖交错在一起。形容事情或情况复杂,交叉错杂的样...
肃然起敬的意思和解释 个性说说

肃然起敬的意思和解释

肃然起敬的意思和解释 1、当好一个指挥员太难了!俄罗斯人的较真劲让中国军官感慨 2、如果不是亲眼所见,记者绝对想不到,当日配枪带班、年仅26岁的民警张东旭,是一个从警只有...
人声鼎沸的解释并造句 个性说说

人声鼎沸的解释并造句

人声鼎沸的解释并造句 1、(微课堂)部编语文四上册第3课《现代诗二首》知识点+图文解读 2、在这片地里,我们种过油菜,种过蚕豆。我在豆田里找过兔草。我把蒲公英吹得飞啊,飞,...
交口称赞这个词语解释 个性说说

交口称赞这个词语解释

交口称赞这个词语解释 1、2020年10月26日,“@中国广州发布”高能剧透由网络名人及知名媒体共同组成的“扶贫公益康康团”赴帮扶地贵州省的行程,长图代替文字宣传,生动形象且清...
千奇百怪的解释9句精选 个性说说

千奇百怪的解释9句精选

千奇百怪的解释 1、出奇制胜:意思是出奇兵战胜敌人,比喻用对方意料不到的方法取得胜利。出自春秋·孙武《孙子兵法·兵势篇》。 2、雁荡山有形状不千奇百怪的石头,非常引人注...